14 research outputs found

    ALS Yeast Models-Past Success Stories and New Opportunities

    Get PDF
    In the past two decades, yeast models have delivered profound insights into basic mechanisms of protein misfolding and the dysfunction of key cellular pathways associated with amyotrophic lateral sclerosis (ALS). Expressing ALS-associated proteins, such as superoxide dismutase (SOD1), TAR DNA binding protein 43 (TDP-43) and Fused in sarcoma (FUS), in yeast recapitulates major hallmarks of ALS pathology, including protein aggregation, mislocalization and cellular toxicity. Results from yeast have consistently been recapitulated in other model systems and even specimens from human patients, thus providing evidence for the power and validity of ALS yeast models. Focusing on impaired ribonucleic acid (RNA) metabolism and protein misfolding and their cytotoxic consequences in ALS, we summarize exemplary discoveries that originated from work in yeast. We also propose previously unexplored experimental strategies to modernize ALS yeast models, which will help to decipher the basic pathomechanisms underlying ALS and thus, possibly contribute to finding a cure

    Protein misfolding toxicity and inclusion formation in cellular models of neurodegeneration

    No full text
    Protein misfolding characterizes most neurodegenerative diseases. Protein misfolding is the conversion of specific proteins from their normal, often soluble, and native three-dimensional conformation into an aberrant, often insoluble, non-functional conformation. Protein inclusions and aggregates are among the major pathological hallmarks of protein misfolding associated with many neurodegenerative diseases. Yet, the role of aggregates and inclusions is not clearly defined and heavily debated. This study utilizes powerful genetic approaches in yeast and verification in mammalian neuronal cell lines to address the misfolding and toxicity of three proteins, the Rho Guanine Nucleotide Exchange Factor (RGNEF), Matrin3, which are involved in amyotrophic lateral sclerosis (ALS) and polyglutamine (polyQ) expanded huntingtin, which causes Huntington’s disease (HD). Genetic, biochemical, and pathological findings implicate RGNEF and Matrin3 in Amyotrophic Lateral Sclerosis (ALS). In this thesis we establish two novel humanized yeast models to study RGNEF and Matrin3. We find that RGNEF is toxic in yeast and can misfold and form inclusions. We also identify a potential new role for RGNEF as a microtubule regulator. Similarly, Matrin3 is also toxic and forms inclusions in yeast. We identify members of the Hsp90 and Hsp70 cytosolic chaperoning machinery as potent determinants of Matrin3 associated toxicity and misfolding and verify our findings in neuronal cell lines. Also, polyQ expanded repeats of the huntingtin protein are the sole known cause of Huntington’s disease (HD). We address the nexus of aging and aggregation, and toxicity of polyQ expanded repeats in a yeast model of aging. Aging is the most significant risk factor for all neurodegeneration, and we find that polyQ toxicity is exacerbated in aged cells while aggregates are lost. We also demonstrate that treating cells expressing polyQ with the steroidal lactone Withaferin A (WA) reduces toxicity while increasing aggregation. In essence, this study contributes to a deeper understanding of three misfolded proteins. Also, our results challenge the long-held postulation that aggregates cause neurodegeneration. Our findings provide further insight into the role of aggregation and inclusions that are crucial for developing effective therapeutic strategies that are not currently available for ALS and HD

    Yeast as a model to study protein misfolding in aged cells

    No full text
    Yeast models of neurodegenerative diseases associated with protein misfolding and protein aggregation have given unique insights into the underlying genetic and cellular pathomechanisms. These yeast models recapitulate central aspects of protein misfolding and the ensuing toxicity, such as interference with cellular protein quality control, concentration-dependent formation of insoluble, often amyloid-like aggregates and the associated toxicity. Advanced age is undoubtedly the highest and most common risk factor for most neurodegenerative diseases. Since yeast has served as a superb model to study cellular aspects of aging, we outline strategies to study how aging modulates protein misfolding and its toxicity, thereby opening new avenues to continue the success of yeast as powerful models to study neurodegenerative diseases

    Inclusion Formation and Toxicity of the ALS Protein RGNEF and Its Association with the Microtubule Network

    No full text
    The Rho guanine nucleotide exchange factor (RGNEF) protein encoded by the ARHGEF28 gene has been implicated in the neurodegenerative disease amyotrophic lateral sclerosis (ALS). Biochemical and pathological studies have shown that RGNEF is a component of the hallmark neuronal cytoplasmic inclusions in ALS-affected neurons. Additionally, a heterozygous mutation in ARHGEF28 has been identified in a number of familial ALS (fALS) cases that may give rise to one of two truncated variants of the protein. Little is known about the normal biological function of RGNEF or how it contributes to ALS pathogenesis. To further explore RGNEF biology we have established and characterized a yeast model and characterized RGNEF expression in several mammalian cell lines. We demonstrate that RGNEF is toxic when overexpressed and forms inclusions. We also found that the fALS-associated mutation in ARGHEF28 gives rise to an inclusion-forming and toxic protein. Additionally, through unbiased screening using the split-ubiquitin system, we have identified RGNEF-interacting proteins, including two ALS-associated proteins. Functional characterization of other RGNEF interactors identified in our screen suggest that RGNEF functions as a microtubule regulator. Our findings indicate that RGNEF misfolding and toxicity may cause impairment of the microtubule network and contribute to ALS pathogenesis

    A randomized, double-blind, placebo-controlled study of latrepirdine in patients with mild to moderate huntington disease: HORIZON investigators of the huntington study group and european huntington's disease network

    No full text

    Optimization of adsorptive removal of α-toluic acid by CaO2 nanoparticles using response surface methodology

    Get PDF
    The present work addresses the optimization of process parameters for adsorptive removal of α-toluic acid by calcium peroxide (CaO2) nanoparticles using response surface methodology (RSM). CaO2 nanoparticles were synthesized by chemical precipitation method and confirmed by Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) analysis which shows the CaO2 nanoparticles size range of 5–15 nm. A series of batch adsorption experiments were performed using CaO2 nanoparticles to remove α-toluic acid from the aqueous solution. Further, an experimental based central composite design (CCD) was developed to study the interactive effect of CaO2 adsorbent dosage, initial concentration of α-toluic acid, and contact time on α-toluic acid removal efficiency (response) and optimization of the process. Analysis of variance (ANOVA) was performed to determine the significance of the individual and the interactive effects of variables on the response. The model predicted response showed a good agreement with the experimental response, and the coefficient of determination, (R2) was 0.92. Among the variables, the interactive effect of adsorbent dosage and the initial α-toluic acid concentration was found to have more influence on the response than the contact time. Numerical optimization of process by RSM showed the optimal adsorbent dosage, initial concentration of α-toluic acid, and contact time as 0.03 g, 7.06 g/L, and 34 min respectively. The predicted removal efficiency was 99.50%. The experiments performed under these conditions showed α-toluic acid removal efficiency up to 98.05%, which confirmed the adequacy of the model prediction

    Global attitudes in the management of acute appendicitis during COVID-19 pandemic: ACIE Appy Study

    No full text
    Background: Surgical strategies are being adapted to face the COVID-19 pandemic. Recommendations on the management of acute appendicitis have been based on expert opinion, but very little evidence is available. This study addressed that dearth with a snapshot of worldwide approaches to appendicitis. Methods: The Association of Italian Surgeons in Europe designed an online survey to assess the current attitude of surgeons globally regarding the management of patients with acute appendicitis during the pandemic. Questions were divided into baseline information, hospital organization and screening, personal protective equipment, management and surgical approach, and patient presentation before versus during the pandemic. Results: Of 744 answers, 709 (from 66 countries) were complete and were included in the analysis. Most hospitals were treating both patients with and those without COVID. There was variation in screening indications and modality used, with chest X-ray plus molecular testing (PCR) being the commonest (19\ub78 per cent). Conservative management of complicated and uncomplicated appendicitis was used by 6\ub76 and 2\ub74 per cent respectively before, but 23\ub77 and 5\ub73 per cent, during the pandemic (both P < 0\ub7001). One-third changed their approach from laparoscopic to open surgery owing to the popular (but evidence-lacking) advice from expert groups during the initial phase of the pandemic. No agreement on how to filter surgical smoke plume during laparoscopy was identified. There was an overall reduction in the number of patients admitted with appendicitis and one-third felt that patients who did present had more severe appendicitis than they usually observe. Conclusion: Conservative management of mild appendicitis has been possible during the pandemic. The fact that some surgeons switched to open appendicectomy may reflect the poor guidelines that emanated in the early phase of SARS-CoV-2

    Cognitive decline in Huntington's disease expansion gene carriers

    No full text
    corecore